Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 994
Filtrar
1.
Methods Mol Biol ; 2788: 243-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656518

RESUMEN

Gamma radiation (60Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits. This is achieved by exposing mutants to a selection agent of interest in controlled conditions and evaluating large numbers of plants in reduced areas. This chapter describes the protocol for establishing gamma radiation dosimetry and in vitro protocols for optimization at the laboratory level using seeds as the starting material, followed by embryogenic cell cultures, somatic embryogenesis, and regeneration. The final product of the protocol is a genetically homogeneous population of Oryza sativa that can be evaluated for breeding against abiotic and biotic stresses.


Asunto(s)
Rayos gamma , Mutagénesis , Oryza , Semillas , Oryza/genética , Oryza/efectos de la radiación , Oryza/crecimiento & desarrollo , Mutagénesis/efectos de la radiación , Semillas/genética , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Regeneración/genética , Técnicas de Embriogénesis Somática de Plantas/métodos
2.
Methods Mol Biol ; 2788: 375-395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656526

RESUMEN

Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.


Asunto(s)
Germinación , Campos Magnéticos , Desarrollo de la Planta , Semillas , Germinación/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Plantas/metabolismo
3.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38660981

RESUMEN

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Asunto(s)
Avena , Germinación , Semillas , Rayos Ultravioleta , Avena/efectos de los fármacos , Avena/efectos de la radiación , Avena/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Estrés Salino/efectos de los fármacos , Plantones/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cloruro de Sodio
4.
PeerJ ; 11: e15281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37128204

RESUMEN

Due to its potential applications in cultivated plants, ionizing radiation (IR) and its effect on organisms is increasingly studied. Here we measured the effects of ionizing radiation on Eruca sativa by analyzing plants from irradiated seeds (1 and 10 Gy) grown in hydroponics. We measured several morpho-physiological traits and genotoxicity. Radiation stress induced a noticeable variability of the morpho-physiological traits highlighting decreased plant vigor. Shoot length and leaf number were significantly higher in 1 Gy-treated samples, whereas root length was significantly higher in 10 Gy treated plants. Stomata number significantly increased with IR dose, whereas both pigment and Rubisco content decreased under radiation stress. Phenol content significantly increased in 1 Gy treated samples, otherwise from total antioxidants, which were not different from control. Most results could find a feasible explanation in a hormesis-like pattern and in a decreased plant vigor under radiation stress. IR induced genotoxic damage, evaluated by ISSR markers, in 15 day old leaves; specifically, a severe decrease in the genome template stability was observed. However, a partial recovery occurred after 2 weeks, especially under the lowest dose (i.e., 1 Gy), suggesting that DNA damage detection and repair mechanisms are active. Pigment content and genotoxic damage may serve as proxies for evaluating plant responses to IR stress, since they show univocal dose-dependent trends. The use of more checkpoints for analyses and more doses over a wider range, as well as the focus on different metabolites, could help elucidate plant response in terms of morpho-physiological changes.


Asunto(s)
Antioxidantes , Daño del ADN , Rayos X , Hidroponía , Semillas/efectos de la radiación , Plantas
5.
Int J Radiat Biol ; 99(9): 1424-1432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36780287

RESUMEN

PURPOSE: The current study investigated the effects of gamma irradiation on biochemical parameters and secondary metabolite accumulation in Summer Savory under field conditions. MATERIALS AND METHODS: The dry seeds of Summer Savory (with a moisture content of 12%) were exposed to gamma radiation at the doses of 20, 40, 60, 80, and 100 Gy. Non-irradiated seeds (0 Gy) were used as control. RESULTS: Our findings showed that gamma radiation at low doses (20-40 Gy) had no effect on biochemical parameters and secondary metabolites accumulation in S. hortensis. These parameters are steadily and significantly increased by raising gamma irradiation doses from 40 to 100 Gy. The highest amount of chlorophyll a and b, carotenoids, anthocyanin, and total phenolic and flavonoid content were observed in 80 and 100 Gy treatments. Plants exposed to 80 and 100 Gy treatments accumulated the maximum amounts of rosmarinic acid and caffeic acid, respectively. Furthermore, the analysis of S. hortensis essential oil revealed that gamma radiation significantly alters its components. Carvacrol, α-Pinene, and α-Thujene levels raised dramatically compared to control with an increase in gamma irradiation dose from 20 to 100 Gy, while Thymol and α-Terpinene levels lowered. CONCLUSIONS: Our results showed that treatment of Summer Savory seeds with gamma radiation at 80 and 100 Gy doses could significantly be raised biochemical parameters and secondary metabolites accumulation under field conditions. The current study showed that gamma irradiation could be used as a pre-sowing elicitor to improve the quantity and quality of phytochemicals in Summer Savory.


Asunto(s)
Aceites Volátiles , Satureja , Satureja/química , Rayos gamma , Clorofila A/farmacología , Semillas/efectos de la radiación
6.
Int J Radiat Biol ; 99(8): 1228-1238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36353750

RESUMEN

HYPOTHESIS: The differences in viability, root length, and pro/antioxidant features of Plantago major seedlings identified in seed progeny formed in areas of radioactive and chemical contamination can persist in subsequent generations after the elimination of the stress. MATERIALS AND METHODS: The seed mixtures of F1 generation were collected from P. major natural populations (P plants) growing for a long time in the East Ural Radioactive Trace, the Karabash Copper Smelter zone, and background area. The seeds of F2 generation were obtained from F1 generation plants grown on experimental plots with 'clean' agricultural background; F3 generation was grown from F2 generation on the same plots. The viability of seed progeny was estimated by survival rate and root length. Pro/antioxidant features were determined spectrophotometrically by malondialdehyde content, superoxide dismutase and catalase activities, and total content of low molecular weight antioxidants in seedlings. RESULTS AND CONCLUSIONS: The hypothesis about the persistence of effects from chronic exposure to ionizing radiation and chemical contamination in the generations' sequence of P. major after the removal of stress was confirmed only partially. The data obtained indicated that changes in the prooxidant and antioxidant features of plants in response to low doses of ionizing radiation can persist for at least in two generations after the stress removal. In the case of long-term exposure to chemical contaminants, we observed the persistence of the effect in a succession of generations only on the morphological indicator of root length.


Asunto(s)
Antioxidantes , Plantago , Antioxidantes/farmacología , Plantago/efectos de la radiación , Plantones , Semillas/efectos de la radiación , Especies Reactivas de Oxígeno
7.
Int J Radiat Biol ; 99(3): 523-533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35980744

RESUMEN

PURPOSE: Salt stress is a significant issue in corn cultivation leading to corn yield reduction, especially in the arid and semi-arid regions. Nuclear technologies, along with other standard methods, can be used as an efficient method for mitigating salt stress effects on plants. MATERIALS AND METHODS: In this research, gamma irradiation (GI) was studied on seeds in the salt stress amelioration of corn in laboratory and field conditions. A total of five doses of gamma rays (25, 50, 100, 150 and 200 Gy) were applied to corn seeds (SC.703) at the laboratory under saline and control conditions. The best gamma-ray treatment (25 Gy) was selected for studying corn under salt stress in the field condition. RESULTS: The length of the radicle, seminal roots and shoot, dry weight of radicle, and seminal roots were affected by salt stress (p <.001). However, GI affected only the radicle and seminal root length (p < .001). The radicle length was decreased as much as 3, 11, 17, 25, and 27% in 25, 50, 100, 150 and 200 Gy of GI, respectively. In addition, the seminal root length was decreased in all GI treatments except 25 Gy (p < .05). Plants derived from seeds exposed to GI (25 Gy) had a higher chlorophyll content of 1, 17, and 29% at V3 (third leaf stage), R1 (silk stage, p < .001), and R4 (dough stage, p < .001), respectively. In GI treatment, the soluble carbohydrate content was significantly higher (p < .001) at all three measurement stages and the soluble protein was significantly higher (p < .001) only at the R4 stage. Moreover, proline content was higher in GI (25 Gy) at V3 (58%, p < .05) and R1 (98%, p < .001) treatment stages. CONCLUSION: Since plants from gamma-irradiated seeds had a greater plant weight and their economic traits (cob and grain weight) were higher compared to control plants under salt stress conditions, it can be concluded that a low dose of GI may ameliorate the effect of salt stress on the corn plants.


Asunto(s)
Germinación , Zea mays , Germinación/efectos de la radiación , Plantones/efectos de la radiación , Clorofila/metabolismo , Estrés Salino , Semillas/efectos de la radiación
8.
Radiat Environ Biophys ; 61(3): 465-477, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35833987

RESUMEN

Quinoa is one of the crops well-adapted to high altitude regions that can grow relatively well under drought, humid, and high UV radiation conditions. This study was performed to investigate the effects of gamma-radiation on quinoa. Seeds were treated with various doses of 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy, and 1000 Gy. We investigated germination, as well as plant height, chlorophyll content, and normalized difference vegetation index (NDVI) at 0, 30, 44, 58, and 88 days after transplanting (DAT) and panicle weight at 88 DAT. The plants grown from the seeds treated at radiation doses greater than 200 Gy showed reduced values in most growth and physiological characteristics. The germination rate and germination speed were higher in the 50 Gy-treated seeds than in 0 Gy-treated (control) seeds. Plant height and panicle weight were highest in the plants from 50 Gy-treated seeds. Chlorophyll content was higher in all treated samples than in the controls. NDVI value showed the highest value in 0 Gy controls and plants treated with 50 Gy. The antioxidant activity was also higher in the plants from the seeds treated with 50 Gy and 100 Gy, showing a steady increase as the radiation dose increased even at 200 Gy. The plants from seeds treated with 0 Gy showed higher expression of proteins related to photorespiration and tubulin chains. The plants from seeds treated with 50 Gy induced more stress-responsive proteins.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/metabolismo , Clorofila/metabolismo , Rayos gamma , Semillas/metabolismo , Semillas/efectos de la radiación
9.
Molecules ; 27(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35163877

RESUMEN

The structural and functional properties of Citrus grandis Osbeck (CGO) seed mucilage by different extraction practices, including conventional citrate buffer, ultrasonic-assisted (UAE), enzymatic-assisted extraction (EAE) with cellulase or Celluclast® 1.5 L and various ultrasonic-assisted enzymatic extraction (UAEE) procedures were investigated. It was found that CGO seed from agricultural and processing byproducts is an excellent new source of high methoxyl pectin with quite high intrinsic viscosity (about 108.64 dL/g) and molecular weight (about 1.9 × 106) as compared with other pectin sources. UAEE with Celluclast® 1.5 L enhanced the extraction yield most pronouncedly (about 2.3 times). Moreover, the monosaccharide composition of CGO seed mucilage is least affected by EAE with Celluclast® 1.5 L. In contrast, EAE with cellulase dramatically reduces the galacturonic acid (GalA) content to less than 60 molar%, and increases the glucose (Glc) content pronouncedly (to about 40 molar%), which may be considered as an adverse effect in terms of pectin purity. Though extraction procedures involved with ultrasound and cellulolytic enzymes generally show a decrease in GalA contents, weight average molar mass and intrinsic viscosity, EAE with Celluclast® 1.5 L is least affected, followed by UAE and UAEE with Celluclast® 1.5 L. These features can be leveraged in favor of diversified applications.


Asunto(s)
Celulasa/metabolismo , Citrus/química , Citrus/metabolismo , Ácidos Hexurónicos/metabolismo , Extractos Vegetales/aislamiento & purificación , Semillas/química , Semillas/metabolismo , Ondas Ultrasónicas , Citrus/efectos de la radiación , Semillas/efectos de la radiación
10.
J Sci Food Agric ; 102(1): 299-311, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34091912

RESUMEN

BACKGROUND: Stevia rebaudiana is a high value crop due to the strong commercial demand for its metabolites (steviol glycosides) but has limited geographical cultivation range. In non-native environments with different daylength and light quality, Stevia has low germination rates and early flowering resulting in lower biomass and poor yield of the desired metabolites. In this study, artificial lighting with light-emitting diodes (LEDs) was used to determine if different light quality within and outside of the photosynthetically active radiation (PAR) range can be used to improve germination rates and yields for production of steviol glycosides for the herbal supplement and food industry. RESULTS: Plants treated with red and blue light at an intensity of 130 µmol m-2  s-1 supplemented with 5% of UV-A light under a 16-h photoperiod produced the most desirable overall results with a high rate of germination, low percentage of early flowering, and high yields of dry leaf, stevioside and rebaudioside A, 175 days after planting. CONCLUSION: While red and blue light combinations are effective for plant growth, the use of supplemental non-PAR irradiation of UV-A wavelength significantly and desirably delayed flowering, enhanced germination, biomass, rebaudioside A and stevioside yields, while supplemental green light improved yield of biomass and rebaudioside A, but not stevioside. Overall, the combination of red, blue and UV-A light resulted in the best overall productivity for Stevia rebaudiana. © 2021 Society of Chemical Industry.


Asunto(s)
Flores/crecimiento & desarrollo , Fotosíntesis/efectos de la radiación , Semillas/efectos de la radiación , Stevia/crecimiento & desarrollo , Biomasa , Diterpenos de Tipo Kaurano/metabolismo , Flores/química , Flores/efectos de los fármacos , Flores/metabolismo , Germinación , Glucósidos/metabolismo , Luz , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Stevia/química , Stevia/metabolismo , Stevia/efectos de la radiación
12.
Plant Mol Biol ; 107(1-2): 117-127, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34490593

RESUMEN

KEY MESSAGE: Cross-talk between light and ABA signaling is mediated by physical interaction between HY5 and ABI5 Arabidopsis. Plants undergo numerous transitions during their life-cycle and have developed a very complex network of signaling to integrate information from their surroundings to effectively survive in the ever-changing environment. Light signaling is one of the crucial factors that govern the plant growth and development from the very first step of that is from seedling germination to the flowering. Similarly, Abscisic acid (ABA) signaling transduces the signals from external unfavorable condition to the internal developmental pathways and is crucial for regulation of seed maturation, dormancy germination and early seedling development. These two fundamental factors coordinately regulate plant wellbeing, but the underlying molecular mechanisms that drive this regulation are poorly understood. Here, we identified that two bZIP transcription factors, ELONGATED HYPOCOTYLE 5 (HY5), a positive regulator of light signaling and ABA-INSENSITIVE 5 (ABI5), a positive regulator of ABA signaling interacts and integrates the two pathways together. Our phenotypic data suggest that ABI5 may act as a negative regulator during photomorphogenesis in contrast, HY5 acts as a positive regulator of ABA signaling in an ABA dependent manner. We further showed that over-expression of HY5 leads to ABA-hypersensitive phenotype and late flowering phenotype. Taken together, our data provides key insights regarding the mechanism of interaction between ABI5-HY5 that fine tunes the stress and developmental response in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Luz , Transducción de Señal , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Flores/fisiología , Germinación/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Transducción de Señal/efectos de la radiación
13.
Genes (Basel) ; 12(9)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34573373

RESUMEN

Heavy-ion irradiation is a powerful mutagen and is widely used for mutation breeding. In this study, using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques, we comprehensively characterized these dynamic changes caused by mutations at three time points (48, 96, and 144 h after irradiation) and the expression profiles of rice seeds irradiated with C ions at two doses. Subsequent WGS analysis revealed that more mutations were detected in response to 40 Gy carbon ion beam (CIB) irradiation than 80 Gy of CIB irradiation at the initial stage (48 h post-irradiation). In the mutants generated from both irradiation doses, single-base substitutions (SBSs) were the most frequent type of mutation induced by CIB irradiation. Among the mutations, the predominant ones were C:T and A:G transitions. CIB irradiation also induced many short InDel mutations. RNA-seq analysis at the three time points showed that the number of differentially expressed genes (DEGs) was highest at 48 h post-irradiation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs showed that the "replication and repair" pathway was enriched specifically 48 h post-irradiation. These results indicate that the DNA damage response (DDR) and the mechanism of DNA repair tend to quickly start within the initial stage (48 h) after irradiation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutación , Oryza/genética , Oryza/efectos de la radiación , Daño del ADN , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Ontología de Genes , Genoma de Planta , Tasa de Mutación , Proteínas de Plantas/genética , Semillas/genética , Semillas/efectos de la radiación , Factores de Tiempo , Secuenciación del Exoma , Secuenciación Completa del Genoma
14.
BMC Plant Biol ; 21(1): 361, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364372

RESUMEN

BACKGROUND: Priming of seed prior chilling is regarded as one of the methods to promote seeds germination, whole plant growth, and yield components. The application of biostimulants was reported as beneficial for protecting many plants from biotic or abiotic stresses. Their value was as important to be involved in improving the growth parameters of plants. Also, they were practiced in the regulation of various metabolic pathways to enhance acclimation and tolerance in coriander against chilling stress. To our knowledge, little is deciphered about the molecular mechanisms underpinning the ameliorative impact of biostimulants in the context of understanding the link and overlap between improved morphological characters, induced metabolic processes, and upregulated gene expression. In this study, the ameliorative effect(s) of potassium silicate, HA, and gamma radiation on acclimation of coriander to tolerate chilling stress was evaluated by integrating the data of growth, yield, physiological and molecular aspects. RESULTS: Plant growth, yield components, and metabolic activities were generally diminished in chilling-stressed coriander plants. On the other hand, levels of ABA and soluble sugars were increased. Alleviation treatment by humic acid, followed by silicate and gamma irradiation, has notably promoted plant growth parameters and yield components in chilling-stressed coriander plants. This improvement was concomitant with a significant increase in phytohormones, photosynthetic pigments, carbohydrate contents, antioxidants defense system, and induction of large subunit of RuBisCO enzyme production. The assembly of Toc complex subunits was maintained, and even their expression was stimulated (especially Toc75 and Toc 34) upon alleviation of the chilling stress by applied biostimulators. Collectively, humic acid was the best the element to alleviate the adverse effects of chilling stress on growth and productivity of coriander. CONCLUSIONS: It could be suggested that the inducing effect of the pretreatments on hormonal balance triggered an increase in IAA + GA3/ABA hormonal ratio. This ratio could be linked and engaged with the protection of cellular metabolic activities from chilling injury against the whole plant life cycle. Therefore, it was speculated that seed priming in humic acid is a powerful technique that can benefit the chilled along with non-chilled plants and sustain the economic importance of coriander plant productivity.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Coriandrum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/crecimiento & desarrollo , Aclimatación , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/análisis , Proteínas de Cloroplastos/metabolismo , Respuesta al Choque por Frío/efectos de los fármacos , Respuesta al Choque por Frío/efectos de la radiación , Coriandrum/efectos de los fármacos , Coriandrum/efectos de la radiación , Enzimas/metabolismo , Rayos gamma , Sustancias Húmicas , Peroxidación de Lípido , Pigmentos Biológicos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Compuestos de Potasio/química , Compuestos de Potasio/farmacología , Semillas/efectos de los fármacos , Semillas/efectos de la radiación
15.
BMC Plant Biol ; 21(1): 313, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215178

RESUMEN

BACKGROUND: Harnessing heterosis is one of the major approaches to increase rice yield and has made a great contribution to food security. The identification and selection of outstanding parental genotypes especially among male sterile lines is a key step for exploiting heterosis. Two-line hybrid system is based on the discovery and application of photoperiod- and thermo-sensitive genic sensitive male sterile (PTGMS) materials. The development of wide-range of male sterile lines from a common gene pool leads to a narrower genetic diversity, which is vulnerable to biotic and abiotic stress. Hence, it is valuable to ascertain the genetic background of PTGMS lines and to understand their relationships in order to select and design a future breeding strategy. RESULTS: A collection of 118 male sterile rice lines and 13 conventional breeding lines from the major rice growing regions of China was evaluated and screened against the photosensitive (pms3) and temperature sensitive male sterility (tms5) genes. The total gene pool was divided into four major populations as P1 possessing the pms3, P2 possessing tms5, P3 possessing both pms3 and tms5 genes, and P4 containing conventional breeding lines without any male sterility allele. The high genetic purity was revealed by homozygous alleles in all populations. The population admixture, principle components and the phylogenetic analysis revealed the close relations of P2 and P3 with P4. The population differentiation analysis showed that P1 has the highest differentiation coefficient. The lines from P1 were observed as the ancestors of other three populations in a phylogenetic tree, while the lines in P2 and P3 showed a close genetic relation with conventional lines. A core collection of top 10% lines with maximum within and among populations genetic diversity was constructed for future research and breeding efforts. CONCLUSION: The low genetic diversity and close genetic relationship among PTGMS lines in P2, P3 and P4 populations suggest a selection sweep and they might result from a backcrossing with common ancestors including the pure lines of P1. The core collection from PTGMS panel updated with new diverse germplasm will serve best for further two-line hybrid breeding.


Asunto(s)
Oryza/genética , Fotoperiodo , Infertilidad Vegetal/genética , Semillas/genética , Temperatura , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Análisis por Conglomerados , Ontología de Genes , Estudios de Asociación Genética , Marcadores Genéticos , Luz , Nucleótidos/genética , Oryza/efectos de la radiación , Filogenia , Infertilidad Vegetal/efectos de la radiación , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Reproducibilidad de los Resultados , Semillas/efectos de la radiación
16.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072151

RESUMEN

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Sonido , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Semillas/efectos de la radiación
17.
J Food Sci ; 86(7): 2990-3000, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34146421

RESUMEN

Effects of infrared ray roasting (IRR) on the oxidation stability and flavors of virgin rapeseed oil (VROs) at 110-170°C were investigated and compared with traditional roller roasting (TRR). Results showed that IRR samples showed lower acid and peroxides values, higher oxidation stability index, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity than TRR ones. IRR samples displayed better thermal expansion of rapeseed for internal fragmentation from microstructures, which facilitated the release of tocophenols (652.63-748.78 mg/kg) and 4-vinylsyringol (7.54-678.19 mg/kg), compared with TRR ones with tocophenols (652.63-689.28 mg/kg) and 4-vinylsyringol (7.54-524.18 mg/kg) contributing to better oxidation stability. Moreover, important volatile compounds, including pyrazines, isothiocyanates, nitriles and aldehydes, were formed quantitatively more in IRR than TRR samples, which was attributed to better heat transfer efficiency and internal fragmentation promoting complex reactions inside rapeseed. Therefore, IRR has more positive roasting effects on VROs than TRR. PRACTICAL APPLICATION: Virgin rapeseed oil is a massively consumed flavor vegetable oil, but the traditional high-temperature roller seed roasting process can cause serious quality problems. Our work applied a novel roasting technology, infrared ray roasting to rapeseed pretreatment. The results show that this new type of roasting technology is more efficient and stable and has important applications in the production of virgin rapeseed oil with better oxidative stability and flavor.


Asunto(s)
Brassica napus/química , Aromatizantes/química , Manipulación de Alimentos/métodos , Aceite de Brassica napus/química , Semillas/efectos de la radiación , Brassica napus/efectos de la radiación , Culinaria , Aromatizantes/efectos de la radiación , Manipulación de Alimentos/instrumentación , Calor , Rayos Infrarrojos , Oxidación-Reducción , Semillas/química
18.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916293

RESUMEN

Magnetic seed enhancement has been practicing as a promising tool to improve germination and seedling growth of low vigor seeds stored under suboptimal conditions, but there is still ambiguity regarding the prospects for magnetism in oilseeds. Present study elucidates the potential of magnetic seed stimulation to improve sunflower germination, growth and yield. Germination and emergence tests were performed to optimize the strength of the magnetic field to sunflower seed enhancement. The seeds were directly exposed to magnetic field strengths of 50, 100 and 150 millitesla (mT) for 5, 10 and 15 min (min) and then standard germination tests were performed. Secondly, the emergence potential of untreated seeds was compared with seed exposed to hydropriming, priming with 3% moringa leaf extract (MLE), priming with magnetically treated water (MTW) for 10 min and priming with 3% MLE solution prepared in magnetically treated water (MTW + MLE). Germination, emergence, seedling growth and seed biochemical properties were used to select the best treatment for field evaluation. The results of the study revealed that magnetic seed treatment with 100 mT for 10 min and seed priming with 3% MLE solution in magnetically treated water (MTW + MLE) significantly improved emergence, crop growth rate and sunflower yield.


Asunto(s)
Helianthus/fisiología , Helianthus/efectos de la radiación , Campos Magnéticos , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Genotipo , Germinación , Desarrollo de la Planta/efectos de la radiación , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Carácter Cuantitativo Heredable , Agua
19.
Int J Radiat Biol ; 97(7): 906-915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33900903

RESUMEN

PURPOSE: Quinoa is an annual plant that grows well in high altitude regions with high radiation and ultraviolet intensity. It has known that high-dose radiation damages living organisms, but low-dose radiation also has a beneficial effect. Therefore, the purpose of this study is to investigate the hormesis effect of gamma-ray on quinoa by growth analysis and hyperspectral imaging. MATERIALS AND METHODS: Quinoa seeds were irradiated at 50, 100, and 200 Gy emitted by 60CO. Subsequently, the seeds were germinated and transplanted into pots, then conducted growth analysis and physiological evaluation every week, and hyperspectral imaging. Photosynthetic ability was measured at 35 days after transplanting (DAT), and the plants for each dose were divided into aerial and underground parts for biomass evaluation at 91 DAT. Various vegetation indices were estimated from 14 to 35 DAT by hyperspectral analysis, and the specific bands were extracted based on the PLS model using plant height, SPAD value, and chlorophyll fluorescence parameters. RESULTS: We found that plant height and biomass were increased in quinoa plants treated with a low dose (50 Gy) as compared to control. Chlorophyll content and chlorophyll fluorescence were not different between doses at the early growth stage, but as growth progressed, the plant irradiated at 200 Gy began to be lower. The photosynthetic ability of the quinoa plant treated at 50 Gy was greater than other plants at 35 DAT. The vegetation indices related to the pigment status also were higher in the plants treated by irradiation at 50 Gy than the plants grown in other doses treatment units at the beginning of the growth. Using the PLS model we collected sensitive band wavelengths from hyperspectral image analysis. Among the collected bands, eight bands closely related to plant height, nine bands to chlorophyll content, and ten bands to chlorophyll fluorescence were identified. CONCLUSION: Our results showed that the growth and physiological parameters of quinoa treated by low dose gamma irradiation to seeds were greater than that of control as well as the plant with higher doses. These findings confirm that the positive changes in the characteristics of quinoa with low dose radiation indicated that hormesis occurs at 50 Gy radiation.


Asunto(s)
Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/efectos de la radiación , Rayos gamma , Hormesis/efectos de la radiación , Chenopodium quinoa/metabolismo , Clorofila/metabolismo , Germinación/efectos de la radiación , Fotosíntesis/efectos de la radiación , Semillas/efectos de la radiación
20.
Bull Entomol Res ; 111(5): 528-543, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33766180

RESUMEN

This study was carried out to investigate the efficacy of the non-thermal atmospheric pressure plasma produced with dielectric barrier discharge (APPD) using air as a processing gas and microwave energy to control Tribolium castaneum and Trogoderma granarium adults and larvae in wheat grains. Insects' mortality was found to be power and time-dependent. The results indicated that non-thermal APPD and the microwave have enough insecticidal effect on the target pests. From the bioassay, LT50's and LT90's levels were estimated, T. granarium larvae appeared more tolerant to non-thermal APPD and the microwave energy than adults 7 days post-exposure. The germination percentage of wheat grains increased as the time of exposure to the non-thermal APPD increased. On the contrary, the germination percentage of wheat grains decreased as the time of exposure to the microwave increased. In addition, changes in antioxidant enzyme activities, catalase (CAT), glutathione S-transferase (GST) and peroxidase, in adults and larvae were examined after 24 h post-treatment to non-thermal APPD at 15.9 W power level, which caused 50% mortality. The activity of CAT, GST and lipid peroxide in the treated larvae showed a significant increase post-exposure to the non-thermal APPD at 15.9 W power level. On the other hand, no significant change in GSH-Px activity was observed. Reductions in the level of glutathione (GSH) and protein content occurred in treated larvae in comparison with the control.


Asunto(s)
Escarabajos/efectos de la radiación , Microondas , Gases em Plasma , Tribolium/efectos de la radiación , Animales , Escarabajos/enzimología , Escarabajos/crecimiento & desarrollo , Germinación , Larva/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Tribolium/enzimología , Tribolium/crecimiento & desarrollo , Triticum/parasitología , Triticum/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...